FMS 2025.01.02-dev
Flexible Modeling System
Loading...
Searching...
No Matches
mpp.F90
1!***********************************************************************
2!* GNU Lesser General Public License
3!*
4!* This file is part of the GFDL Flexible Modeling System (FMS).
5!*
6!* FMS is free software: you can redistribute it and/or modify it under
7!* the terms of the GNU Lesser General Public License as published by
8!* the Free Software Foundation, either version 3 of the License, or (at
9!* your option) any later version.
10!*
11!* FMS is distributed in the hope that it will be useful, but WITHOUT
12!* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13!* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14!* for more details.
15!*
16!* You should have received a copy of the GNU Lesser General Public
17!* License along with FMS. If not, see <http://www.gnu.org/licenses/>.
18!***********************************************************************
19!-----------------------------------------------------------------------
20! Communication for message-passing codes
21!
22! AUTHOR: V. Balaji (V.Balaji@noaa.gov)
23! SGI/GFDL Princeton University
24!
25!-----------------------------------------------------------------------
26
27!> @defgroup mpp_mod mpp_mod
28!> @ingroup mpp
29!> @brief This module defines interfaces for common operations using message-passing libraries.
30!! Any type-less arguments in the documentation are MPP_TYPE_ which is defined by the pre-processor
31!! to create multiple subroutines out of one implementation for use in an interface. See the note
32!! below for more information
33!!
34!> @author V. Balaji <"V.Balaji@noaa.gov">
35!!
36!! A set of simple calls to provide a uniform interface
37!! to different message-passing libraries. It currently can be
38!! implemented either in the SGI/Cray native SHMEM library or in the MPI
39!! standard. Other libraries (e.g MPI-2, Co-Array Fortran) can be
40!! incorporated as the need arises.
41!!
42!! The data transfer between a processor and its own memory is based
43!! on <TT>load</TT> and <TT>store</TT> operations upon
44!! memory. Shared-memory systems (including distributed shared memory
45!! systems) have a single address space and any processor can acquire any
46!! data within the memory by <TT>load</TT> and
47!! <TT>store</TT>. The situation is different for distributed
48!! parallel systems. Specialized MPP systems such as the T3E can simulate
49!! shared-memory by direct data acquisition from remote memory. But if
50!! the parallel code is distributed across a cluster, or across the Net,
51!! messages must be sent and received using the protocols for
52!! long-distance communication, such as TCP/IP. This requires a
53!! ``handshaking'' between nodes of the distributed system. One can think
54!! of the two different methods as involving <TT>put</TT>s or
55!! <TT>get</TT>s (e.g the SHMEM library), or in the case of
56!! negotiated communication (e.g MPI), <TT>send</TT>s and
57!! <TT>recv</TT>s.
58!!
59!! The difference between SHMEM and MPI is that SHMEM uses one-sided
60!! communication, which can have very low-latency high-bandwidth
61!! implementations on tightly coupled systems. MPI is a standard
62!! developed for distributed computing across loosely-coupled systems,
63!! and therefore incurs a software penalty for negotiating the
64!! communication. It is however an open industry standard whereas SHMEM
65!! is a proprietary interface. Besides, the <TT>put</TT>s or
66!! <TT>get</TT>s on which it is based cannot currently be implemented in
67!! a cluster environment (there are recent announcements from Compaq that
68!! occasion hope).
69!!
70!! The message-passing requirements of climate and weather codes can be
71!! reduced to a fairly simple minimal set, which is easily implemented in
72!! any message-passing API. <TT>mpp_mod</TT> provides this API.
73!!
74!! Features of <TT>mpp_mod</TT> include:
75!! <ol>
76!! <li> Simple, minimal API, with free access to underlying API for </li>
77!! more complicated stuff.<BR/>
78!! <li> Design toward typical use in climate/weather CFD codes. </li>
79!! <li> Performance to be not significantly lower than any native API. </li>
80!! </ol>
81!!
82!! This module is used to develop higher-level calls for
83!! domain decomposition (@ref mpp_domains) and parallel I/O (@ref fms2_io)
84!! <br/>
85!! Parallel computing is initially daunting, but it soon becomes
86!! second nature, much the way many of us can now write vector code
87!! without much effort. The key insight required while reading and
88!! writing parallel code is in arriving at a mental grasp of several
89!! independent parallel execution streams through the same code (the SPMD
90!! model). Each variable you examine may have different values for each
91!! stream, the processor ID being an obvious example. Subroutines and
92!! function calls are particularly subtle, since it is not always obvious
93!! from looking at a call what synchronization between execution streams
94!! it implies. An example of erroneous code would be a global barrier
95!! call (see @ref mpp_sync below) placed
96!! within a code block that not all PEs will execute, e.g:
97!!
98!! <PRE>
99!! if( pe.EQ.0 )call mpp_sync()
100!! </PRE>
101!!
102!! Here only PE 0 reaches the barrier, where it will wait
103!! indefinitely. While this is a particularly egregious example to
104!! illustrate the coding flaw, more subtle versions of the same are
105!! among the most common errors in parallel code.
106!! <br/>
107!! It is therefore important to be conscious of the context of a
108!! subroutine or function call, and the implied synchronization. There
109!! are certain calls here (e.g <TT>mpp_declare_pelist, mpp_init,
110!! mpp_set_stack_size</TT>) which must be called by all
111!! PEs. There are others which must be called by a subset of PEs (here
112!! called a <TT>pelist</TT>) which must be called by all the PEs in the
113!! <TT>pelist</TT> (e.g <TT>mpp_max, mpp_sum, mpp_sync</TT>). Still
114!! others imply no synchronization at all. I will make every effort to
115!! highlight the context of each call in the MPP modules, so that the
116!! implicit synchronization is spelt out.
117!! <br/>
118!! For performance it is necessary to keep synchronization as limited
119!! as the algorithm being implemented will allow. For instance, a single
120!! message between two PEs should only imply synchronization across the
121!! PEs in question. A <I>global</I> synchronization (or <I>barrier</I>)
122!! is likely to be slow, and is best avoided. But codes first
123!! parallelized on a Cray T3E tend to have many global syncs, as very
124!! fast barriers were implemented there in hardware.
125!! <br/>
126!! Another reason to use pelists is to run a single program in MPMD
127!! mode, where different PE subsets work on different portions of the
128!! code. A typical example is to assign an ocean model and atmosphere
129!! model to different PE subsets, and couple them concurrently instead of
130!! running them serially. The MPP module provides the notion of a
131!! <I>current pelist</I>, which is set when a group of PEs branch off
132!! into a subset. Subsequent calls that omit the <TT>pelist</TT> optional
133!! argument (seen below in many of the individual calls) assume that the
134!! implied synchronization is across the current pelist. The calls
135!! <TT>mpp_root_pe</TT> and <TT>mpp_npes</TT> also return the values
136!! appropriate to the current pelist. The <TT>mpp_set_current_pelist</TT>
137!! call is provided to set the current pelist.
138!! </DESCRIPTION>
139!! <br/>
140!!
141!! @note F90 is a strictly-typed language, and the syntax pass of the
142!! compiler requires matching of type, kind and rank (TKR). Most calls
143!! listed here use a generic type, shown here as <TT>MPP_TYPE_</TT>. This
144!! is resolved in the pre-processor stage to any of a variety of
145!! types. In general the MPP operations work on 4-byte and 8-byte
146!! variants of <TT>integer, real, complex, logical</TT> variables, of
147!! rank 0 to 5, leading to 48 specific module procedures under the same
148!! generic interface. Any of the variables below shown as
149!! <TT>MPP_TYPE_</TT> is treated in this way.
150
151module mpp_mod
152
153! Define rank(X) for PGI compiler
154#if defined( __PGI) || defined (__FLANG)
155#define rank(X) size(shape(X))
156#endif
157
158
159#if defined(use_libMPI)
160 use mpi
161#endif
162
163 use iso_fortran_env, only : input_unit, output_unit, error_unit
164 use mpp_parameter_mod, only : mpp_verbose, mpp_debug, all_pes, any_pe, null_pe
165 use mpp_parameter_mod, only : note, warning, fatal, mpp_clock_detailed,mpp_clock_sync
166 use mpp_parameter_mod, only : clock_component, clock_subcomponent, clock_module_driver
167 use mpp_parameter_mod, only : clock_module, clock_routine, clock_loop, clock_infra
168 use mpp_parameter_mod, only : max_events, max_bins, max_event_types, max_clocks
169 use mpp_parameter_mod, only : maxpes, event_wait, event_allreduce, event_broadcast
170 use mpp_parameter_mod, only : event_alltoall
171 use mpp_parameter_mod, only : event_type_create, event_type_free
172 use mpp_parameter_mod, only : event_recv, event_send, mpp_ready, mpp_wait
173 use mpp_parameter_mod, only : mpp_parameter_version=>version
174 use mpp_parameter_mod, only : default_tag
175 use mpp_parameter_mod, only : comm_tag_1, comm_tag_2, comm_tag_3, comm_tag_4
176 use mpp_parameter_mod, only : comm_tag_5, comm_tag_6, comm_tag_7, comm_tag_8
177 use mpp_parameter_mod, only : comm_tag_9, comm_tag_10, comm_tag_11, comm_tag_12
178 use mpp_parameter_mod, only : comm_tag_13, comm_tag_14, comm_tag_15, comm_tag_16
179 use mpp_parameter_mod, only : comm_tag_17, comm_tag_18, comm_tag_19, comm_tag_20
180 use mpp_parameter_mod, only : mpp_fill_int,mpp_fill_double
181 use mpp_data_mod, only : stat, mpp_stack, ptr_stack, status, ptr_status, sync, ptr_sync
182 use mpp_data_mod, only : mpp_from_pe, ptr_from, remote_data_loc, ptr_remote
183 use mpp_data_mod, only : mpp_data_version=>version
184 use platform_mod
185
186implicit none
187private
188
189 !--- public parameters -----------------------------------------------
190 public :: mpp_verbose, mpp_debug, all_pes, any_pe, null_pe, note, warning, fatal
191 public :: mpp_clock_sync, mpp_clock_detailed, clock_component, clock_subcomponent
192 public :: clock_module_driver, clock_module, clock_routine, clock_loop, clock_infra
193 public :: maxpes, event_recv, event_send
194 public :: comm_tag_1, comm_tag_2, comm_tag_3, comm_tag_4
195 public :: comm_tag_5, comm_tag_6, comm_tag_7, comm_tag_8
196 public :: comm_tag_9, comm_tag_10, comm_tag_11, comm_tag_12
197 public :: comm_tag_13, comm_tag_14, comm_tag_15, comm_tag_16
198 public :: comm_tag_17, comm_tag_18, comm_tag_19, comm_tag_20
199 public :: mpp_fill_int,mpp_fill_double,mpp_info_null,mpp_comm_null
200 public :: mpp_init_test_full_init, mpp_init_test_init_true_only, mpp_init_test_peset_allocated
201 public :: mpp_init_test_clocks_init, mpp_init_test_datatype_list_init, mpp_init_test_logfile_init
202 public :: mpp_init_test_read_namelist, mpp_init_test_etc_unit, mpp_init_test_requests_allocated
203
204 !--- public interface from mpp_util.h ------------------------------
205 public :: stdin, stdout, stderr, stdlog, warnlog, lowercase, uppercase, mpp_error, mpp_error_state
206 public :: mpp_set_warn_level, mpp_sync, mpp_sync_self, mpp_pe
207 public :: mpp_npes, mpp_root_pe, mpp_commid, mpp_set_root_pe, mpp_declare_pelist
208 public :: mpp_get_current_pelist, mpp_set_current_pelist, mpp_get_current_pelist_name
209 public :: mpp_clock_id, mpp_clock_set_grain, mpp_record_timing_data, get_unit
210 public :: read_ascii_file, read_input_nml, mpp_clock_begin, mpp_clock_end
211 public :: get_ascii_file_num_lines, get_ascii_file_num_lines_and_length
212 public :: mpp_record_time_start, mpp_record_time_end
213
214 !--- public interface from mpp_comm.h ------------------------------
216 public :: mpp_sum_ad
217 public :: mpp_broadcast, mpp_init, mpp_exit
219 public :: mpp_type, mpp_byte, mpp_type_create, mpp_type_free
220
221 !*********************************************************************
222 !
223 ! public data type
224 !
225 !*********************************************************************
226 !> Communication information for message passing libraries
227 !!
228 !> peset hold communicators as SHMEM-compatible triads (start, log2(stride), num)
229 !> @ingroup mpp_mod
231 private
232 character(len=32) :: name
233 integer, pointer :: list(:) =>null()
234 integer :: count
235 integer :: start, log2stride !< dummy variables when libMPI is defined.
236 integer :: id, group !< MPI communicator and group id for this PE set.
237 end type communicator
238
239 !> Communication event profile
240 !> @ingroup mpp_mod
241 type :: event
242 private
243 character(len=16) :: name
244 integer(i8_kind), dimension(MAX_EVENTS) :: ticks, bytes
245 integer :: calls
246 end type event
247
248 !> a clock contains an array of event profiles for a region
249 !> @ingroup mpp_mod
250 type :: clock
251 private
252 character(len=32) :: name
253 integer(i8_kind) :: hits
254 integer(i8_kind) :: tick
255 integer(i8_kind) :: total_ticks
256 integer :: peset_num
257 logical :: sync_on_begin, detailed
258 integer :: grain
259 type(event), pointer :: events(:) =>null() !> if needed, allocate to MAX_EVENT_TYPES
260 logical :: is_on !> initialize to false. set true when calling mpp_clock_begin
261 !! set false when calling mpp_clock_end
262 end type clock
263
264 !> Summary of information from a clock run
265 !> @ingroup mpp_mod
267 private
268 character(len=16) :: name
269 real(r8_kind) :: msg_size_sums(MAX_BINS)
270 real(r8_kind) :: msg_time_sums(MAX_BINS)
271 real(r8_kind) :: total_data
272 real(r8_kind) :: total_time
273 integer(i8_kind) :: msg_size_cnts(MAX_BINS)
274 integer(i8_kind) :: total_cnts
275 end type clock_data_summary
276
277 !> holds name and clock data for use in @ref mpp_util.h
278 !> @ingroup mpp_mod
280 private
281 character(len=16) :: name
282 type (Clock_Data_Summary) :: event(MAX_EVENT_TYPES)
283 end type summary_struct
284
285 !> Data types for generalized data transfer (e.g. MPI_Type)
286 !> @ingroup mpp_mod
287 type :: mpp_type
288 private
289 integer :: counter !> Number of instances of this type
290 integer :: ndims
291 integer, allocatable :: sizes(:)
292 integer, allocatable :: subsizes(:)
293 integer, allocatable :: starts(:)
294 integer :: etype !> Elementary data type (e.g. MPI_BYTE)
295 integer :: id !> Identifier within message passing library (e.g. MPI)
296
297 type(mpp_type), pointer :: prev => null()
298 type(mpp_type), pointer :: next => null()
299 end type mpp_type
300
301 !> Persisent elements for linked list interaction
302 !> @ingroup mpp_mod
304 private
305 type(mpp_type), pointer :: head => null()
306 type(mpp_type), pointer :: tail => null()
307 integer :: length
308 end type mpp_type_list
309
310!***********************************************************************
311!
312! public interface from mpp_util.h
313!
314!***********************************************************************
315 !> @brief Error handler.
316 !!
317 !> It is strongly recommended that all error exits pass through
318 !! <TT>mpp_error</TT> to assure the program fails cleanly. An individual
319 !! PE encountering a <TT>STOP</TT> statement, for instance, can cause the
320 !! program to hang. The use of the <TT>STOP</TT> statement is strongly
321 !! discouraged.
322 !!
323 !! Calling mpp_error with no arguments produces an immediate error
324 !! exit, i.e:
325 !! <PRE>
326 !! call mpp_error
327 !! call mpp_error()
328 !! </PRE>
329 !! are equivalent.
330 !!
331 !! The argument order
332 !! <PRE>
333 !! call mpp_error( routine, errormsg, errortype )
334 !! </PRE>
335 !! is also provided to support legacy code. In this version of the
336 !! call, none of the arguments may be omitted.
337 !!
338 !! The behaviour of <TT>mpp_error</TT> for a <TT>WARNING</TT> can be
339 !! controlled with an additional call <TT>mpp_set_warn_level</TT>.
340 !! <PRE>
341 !! call mpp_set_warn_level(ERROR)
342 !! </PRE>
343 !! causes <TT>mpp_error</TT> to treat <TT>WARNING</TT>
344 !! exactly like <TT>FATAL</TT>.
345 !! <PRE>
346 !! call mpp_set_warn_level(WARNING)
347 !! </PRE>
348 !! resets to the default behaviour described above.
349 !!
350 !! <TT>mpp_error</TT> also has an internal error state which
351 !! maintains knowledge of whether a warning has been issued. This can be
352 !! used at startup in a subroutine that checks if the model has been
353 !! properly configured. You can generate a series of warnings using
354 !! <TT>mpp_error</TT>, and then check at the end if any warnings has been
355 !! issued using the function <TT>mpp_error_state()</TT>. If the value of
356 !! this is <TT>WARNING</TT>, at least one warning has been issued, and
357 !! the user can take appropriate action:
358 !!
359 !! <PRE>
360 !! if( ... )call mpp_error( WARNING, '...' )
361 !! if( ... )call mpp_error( WARNING, '...' )
362 !! if( ... )call mpp_error( WARNING, '...' )
363 !! ...
364 !! if( mpp_error_state().EQ.WARNING )call mpp_error( FATAL, '...' )
365 !! </PRE>
366 !! </DESCRIPTION>
367 !! <br> Example usage:
368 !! @code{.F90}
369 !! call mpp_error( errortype, routine, errormsg )
370 !! @endcode
371 !! @param errortype
372 !! One of <TT>NOTE</TT>, <TT>WARNING</TT> or <TT>FATAL</TT>
373 !! (these definitions are acquired by use association).
374 !! <TT>NOTE</TT> writes <TT>errormsg</TT> to <TT>STDOUT</TT>.
375 !! <TT>WARNING</TT> writes <TT>errormsg</TT> to <TT>STDERR</TT>.
376 !! <TT>FATAL</TT> writes <TT>errormsg</TT> to <TT>STDERR</TT>,
377 !! and induces a clean error exit with a call stack traceback.
378 !! @param routine Calling routine name
379 !! @param errmsg Message to output
380 !! </IN>
381 !> @ingroup mpp_mod
382 interface mpp_error
383 module procedure mpp_error_basic
384 module procedure mpp_error_mesg
385 module procedure mpp_error_noargs
386 module procedure mpp_error_is
387 module procedure mpp_error_rs
388 module procedure mpp_error_ia
389 module procedure mpp_error_ra
390 module procedure mpp_error_ia_ia
391 module procedure mpp_error_ia_ra
392 module procedure mpp_error_ra_ia
393 module procedure mpp_error_ra_ra
394 module procedure mpp_error_ia_is
395 module procedure mpp_error_ia_rs
396 module procedure mpp_error_ra_is
397 module procedure mpp_error_ra_rs
398 module procedure mpp_error_is_ia
399 module procedure mpp_error_is_ra
400 module procedure mpp_error_rs_ia
401 module procedure mpp_error_rs_ra
402 module procedure mpp_error_is_is
403 module procedure mpp_error_is_rs
404 module procedure mpp_error_rs_is
405 module procedure mpp_error_rs_rs
406 end interface
407 !> Takes a given integer or real array and returns it as a string
408 !> @param[in] array An array of integers or reals
409 !> @returns string equivalent of given array
410 !> @ingroup mpp_mod
412 module procedure iarray_to_char
413 module procedure rarray_to_char
414 end interface
415
416!***********************************************************************
417!
418! public interface from mpp_comm.h
419!
420!***********************************************************************
421
422!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
423 ! !
424 ! ROUTINES TO INITIALIZE/FINALIZE MPP MODULE: mpp_init, mpp_exit !
425 ! !
426!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
427
428!> @fn mpp_mod::mpp_init::mpp_init( flags, localcomm, test_level)
429!> @ingroup mpp_mod
430!> @brief Initialize @ref mpp_mod
431!!
432!> Called to initialize the <TT>mpp_mod</TT> package. It is recommended
433!! that this call be the first executed line in your program. It sets the
434!! number of PEs assigned to this run (acquired from the command line, or
435!! through the environment variable <TT>NPES</TT>), and associates an ID
436!! number to each PE. These can be accessed by calling @ref mpp_npes and
437!! @ref mpp_pe.
438!! <br> Example usage:
439!!
440!! call mpp_init( flags )
441!!
442!! @param flags
443!! <TT>flags</TT> can be set to <TT>MPP_VERBOSE</TT> to
444!! have <TT>mpp_mod</TT> keep you informed of what it's up to.
445!! @param test_level
446!! Debugging flag to set amount of initialization tasks performed
447
448!> @fn mpp_mod::mpp_exit()
449!> @brief Exit <TT>@ref mpp_mod</TT>.
450!!
451!> Called at the end of the run, or to re-initialize <TT>mpp_mod</TT>,
452!! should you require that for some odd reason.
453!!
454!! This call implies synchronization across all PEs.
455!!
456!! <br>Example usage:
457!!
458!! call mpp_exit()
459!> @ingroup mpp_mod
460
461 !#####################################################################
462
463 !> @fn subroutine mpp_set_stack_size(n)
464 !> @brief Allocate module internal workspace.
465 !> @param Integer to set stack size to(in words)
466 !> <TT>mpp_mod</TT> maintains a private internal array called
467 !! <TT>mpp_stack</TT> for private workspace. This call sets the length,
468 !! in words, of this array.
469 !!
470 !! The <TT>mpp_init</TT> call sets this
471 !! workspace length to a default of 32768, and this call may be used if a
472 !! longer workspace is needed.
473 !!
474 !! This call implies synchronization across all PEs.
475 !!
476 !! This workspace is symmetrically allocated, as required for
477 !! efficient communication on SGI and Cray MPP systems. Since symmetric
478 !! allocation must be performed by <I>all</I> PEs in a job, this call
479 !! must also be called by all PEs, using the same value of
480 !! <TT>n</TT>. Calling <TT>mpp_set_stack_size</TT> from a subset of PEs,
481 !! or with unequal argument <TT>n</TT>, may cause the program to hang.
482 !!
483 !! If any MPP call using <TT>mpp_stack</TT> overflows the declared
484 !! stack array, the program will abort with a message specifying the
485 !! stack length that is required. Many users wonder why, if the required
486 !! stack length can be computed, it cannot also be specified at that
487 !! point. This cannot be automated because there is no way for the
488 !! program to know if all PEs are present at that call, and with equal
489 !! values of <TT>n</TT>. The program must be rerun by the user with the
490 !! correct argument to <TT>mpp_set_stack_size</TT>, called at an
491 !! appropriate point in the code where all PEs are known to be present.
492 !! @verbose call mpp_set_stack_size(n)
493 !!
494 !> @ingroup mpp_mod
495 public :: mpp_set_stack_size
496 ! from mpp_util.h
497
498!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
499! !
500! DATA TRANSFER TYPES: mpp_type_create !
501! !
502!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
503
504 !> @brief Create a mpp_type variable
505 !> @param[in] field A field of any numerical or logical type
506 !> @param[in] array_of_subsizes Integer array of subsizes
507 !> @param[in] array_of_starts Integer array of starts
508 !> @param[out] dtype_out Output variable for created @ref mpp_type
509 !> @ingroup mpp_mod
511 module procedure mpp_type_create_int4
512 module procedure mpp_type_create_int8
513 module procedure mpp_type_create_real4
514 module procedure mpp_type_create_real8
515 module procedure mpp_type_create_cmplx4
516 module procedure mpp_type_create_cmplx8
517 module procedure mpp_type_create_logical4
518 module procedure mpp_type_create_logical8
519 end interface mpp_type_create
520
521!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
522 ! !
523 ! GLOBAL REDUCTION ROUTINES: mpp_max, mpp_sum, mpp_min !
524 ! !
525!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
526
527 !> @brief Reduction operations.
528 !> Find the max of scalar a from the PEs in pelist
529 !! result is also automatically broadcast to all PEs
530 !! @code{.F90}
531 !! call mpp_max( a, pelist )
532 !! @endcode
533 !> @param a <TT>real</TT> or <TT>integer</TT>, of 4-byte of 8-byte kind.
534 !> @param pelist If <TT>pelist</TT> is omitted, the context is assumed to be the
535 !! current pelist. This call implies synchronization across the PEs in
536 !! <TT>pelist</TT>, or the current pelist if <TT>pelist</TT> is absent.
537 !> @ingroup mpp_mod
538 interface mpp_max
539 module procedure mpp_max_real8_0d
540 module procedure mpp_max_real8_1d
541 module procedure mpp_max_int8_0d
542 module procedure mpp_max_int8_1d
543 module procedure mpp_max_real4_0d
544 module procedure mpp_max_real4_1d
545 module procedure mpp_max_int4_0d
546 module procedure mpp_max_int4_1d
547 end interface
548
549 !> @brief Reduction operations.
550 !> Find the min of scalar a from the PEs in pelist
551 !! result is also automatically broadcast to all PEs
552 !! @code{.F90}
553 !! call mpp_min( a, pelist )
554 !! @endcode
555 !> @param a <TT>real</TT> or <TT>integer</TT>, of 4-byte of 8-byte kind.
556 !> @param pelist If <TT>pelist</TT> is omitted, the context is assumed to be the
557 !! current pelist. This call implies synchronization across the PEs in
558 !! <TT>pelist</TT>, or the current pelist if <TT>pelist</TT> is absent.
559 !> @ingroup mpp_mod
560 interface mpp_min
561 module procedure mpp_min_real8_0d
562 module procedure mpp_min_real8_1d
563 module procedure mpp_min_int8_0d
564 module procedure mpp_min_int8_1d
565 module procedure mpp_min_real4_0d
566 module procedure mpp_min_real4_1d
567 module procedure mpp_min_int4_0d
568 module procedure mpp_min_int4_1d
569 end interface
570
571
572 !> @brief Reduction operation.
573 !!
574 !> <TT>MPP_TYPE_</TT> corresponds to any 4-byte and 8-byte variant of
575 !! <TT>integer, real, complex</TT> variables, of rank 0 or 1. A
576 !! contiguous block from a multi-dimensional array may be passed by its
577 !! starting address and its length, as in <TT>f77</TT>.
578 !!
579 !! Library reduction operators are not required or guaranteed to be
580 !! bit-reproducible. In any case, changing the processor count changes
581 !! the data layout, and thus very likely the order of operations. For
582 !! bit-reproducible sums of distributed arrays, consider using the
583 !! <TT>mpp_global_sum</TT> routine provided by the
584 !! @ref mpp_domains module.
585 !!
586 !! The <TT>bit_reproducible</TT> flag provided in earlier versions of
587 !! this routine has been removed.
588 !!
589 !!
590 !! If <TT>pelist</TT> is omitted, the context is assumed to be the
591 !! current pelist. This call implies synchronization across the PEs in
592 !! <TT>pelist</TT>, or the current pelist if <TT>pelist</TT> is absent.
593 !! Example usage:
594 !! call mpp_sum( a, length, pelist )
595 !!
596 !> @ingroup mpp_mod
597 interface mpp_sum
598 module procedure mpp_sum_int8
599 module procedure mpp_sum_int8_scalar
600 module procedure mpp_sum_int8_2d
601 module procedure mpp_sum_int8_3d
602 module procedure mpp_sum_int8_4d
603 module procedure mpp_sum_int8_5d
604 module procedure mpp_sum_real8
605 module procedure mpp_sum_real8_scalar
606 module procedure mpp_sum_real8_2d
607 module procedure mpp_sum_real8_3d
608 module procedure mpp_sum_real8_4d
609 module procedure mpp_sum_real8_5d
610#ifdef OVERLOAD_C8
611 module procedure mpp_sum_cmplx8
612 module procedure mpp_sum_cmplx8_scalar
613 module procedure mpp_sum_cmplx8_2d
614 module procedure mpp_sum_cmplx8_3d
615 module procedure mpp_sum_cmplx8_4d
616 module procedure mpp_sum_cmplx8_5d
617#endif
618 module procedure mpp_sum_int4
619 module procedure mpp_sum_int4_scalar
620 module procedure mpp_sum_int4_2d
621 module procedure mpp_sum_int4_3d
622 module procedure mpp_sum_int4_4d
623 module procedure mpp_sum_int4_5d
624 module procedure mpp_sum_real4
625 module procedure mpp_sum_real4_scalar
626 module procedure mpp_sum_real4_2d
627 module procedure mpp_sum_real4_3d
628 module procedure mpp_sum_real4_4d
629 module procedure mpp_sum_real4_5d
630#ifdef OVERLOAD_C4
631 module procedure mpp_sum_cmplx4
632 module procedure mpp_sum_cmplx4_scalar
633 module procedure mpp_sum_cmplx4_2d
634 module procedure mpp_sum_cmplx4_3d
635 module procedure mpp_sum_cmplx4_4d
636 module procedure mpp_sum_cmplx4_5d
637#endif
638 end interface
639
640 !> Calculates sum of a given numerical array across pe's for adjoint domains
641 !> @ingroup mpp_mod
642 interface mpp_sum_ad
643 module procedure mpp_sum_int8_ad
644 module procedure mpp_sum_int8_scalar_ad
645 module procedure mpp_sum_int8_2d_ad
646 module procedure mpp_sum_int8_3d_ad
647 module procedure mpp_sum_int8_4d_ad
648 module procedure mpp_sum_int8_5d_ad
649 module procedure mpp_sum_real8_ad
650 module procedure mpp_sum_real8_scalar_ad
651 module procedure mpp_sum_real8_2d_ad
652 module procedure mpp_sum_real8_3d_ad
653 module procedure mpp_sum_real8_4d_ad
654 module procedure mpp_sum_real8_5d_ad
655#ifdef OVERLOAD_C8
656 module procedure mpp_sum_cmplx8_ad
657 module procedure mpp_sum_cmplx8_scalar_ad
658 module procedure mpp_sum_cmplx8_2d_ad
659 module procedure mpp_sum_cmplx8_3d_ad
660 module procedure mpp_sum_cmplx8_4d_ad
661 module procedure mpp_sum_cmplx8_5d_ad
662#endif
663 module procedure mpp_sum_int4_ad
664 module procedure mpp_sum_int4_scalar_ad
665 module procedure mpp_sum_int4_2d_ad
666 module procedure mpp_sum_int4_3d_ad
667 module procedure mpp_sum_int4_4d_ad
668 module procedure mpp_sum_int4_5d_ad
669 module procedure mpp_sum_real4_ad
670 module procedure mpp_sum_real4_scalar_ad
671 module procedure mpp_sum_real4_2d_ad
672 module procedure mpp_sum_real4_3d_ad
673 module procedure mpp_sum_real4_4d_ad
674 module procedure mpp_sum_real4_5d_ad
675#ifdef OVERLOAD_C4
676 module procedure mpp_sum_cmplx4_ad
677 module procedure mpp_sum_cmplx4_scalar_ad
678 module procedure mpp_sum_cmplx4_2d_ad
679 module procedure mpp_sum_cmplx4_3d_ad
680 module procedure mpp_sum_cmplx4_4d_ad
681 module procedure mpp_sum_cmplx4_5d_ad
682#endif
683 end interface
684
685 !> @brief Gather data sent from pelist onto the root pe
686 !! Wrapper for MPI_gather, can be used with and without indices
687 !> @ingroup mpp_mod
688 !!
689 !> @param sbuf MPP_TYPE_ data buffer to send
690 !> @param rbuf MPP_TYPE_ data buffer to receive
691 !> @param pelist integer(:) optional pelist to gather from, defaults to current
692 !>
693 !> <BR> Example usage:
694 !!
695 !! call mpp_gather(send_buffer,recv_buffer, pelist)
696 !! call mpp_gather(is, ie, js, je, pelist, array_seg, data, is_root_pe)
697 !!
698 interface mpp_gather
699 module procedure mpp_gather_logical4
700 module procedure mpp_gatherv_logical4
701 module procedure mpp_gather_logical_1d
702 module procedure mpp_gather_int4
703 module procedure mpp_gather_int8
704 module procedure mpp_gatherv_int4
705 module procedure mpp_gatherv_int8
706 module procedure mpp_gather_int4_1d
707 module procedure mpp_gather_int8_1d
708 module procedure mpp_gather_real4
709 module procedure mpp_gather_real8
710 module procedure mpp_gatherv_real4
711 module procedure mpp_gatherv_real8
712 module procedure mpp_gather_real4_1d
713 module procedure mpp_gather_real8_1d
714 module procedure mpp_gather_logical_1dv
715 module procedure mpp_gather_int4_1dv
716 module procedure mpp_gather_int8_1dv
717 module procedure mpp_gather_real4_1dv
718 module procedure mpp_gather_real8_1dv
719 module procedure mpp_gather_pelist_logical_2d
720 module procedure mpp_gather_pelist_logical_3d
721 module procedure mpp_gather_pelist_int4_2d
722 module procedure mpp_gather_pelist_int4_3d
723 module procedure mpp_gather_pelist_int8_2d
724 module procedure mpp_gather_pelist_int8_3d
725 module procedure mpp_gather_pelist_real4_2d
726 module procedure mpp_gather_pelist_real4_3d
727 module procedure mpp_gather_pelist_real8_2d
728 module procedure mpp_gather_pelist_real8_3d
729 end interface
730
731 !> @brief Scatter (ie - is) * (je - js) contiguous elements of array data from the designated root pe
732 !! into contigous members of array segment in each pe that is included in the pelist argument.
733 !> @ingroup mpp_mod
734 !!
735 !> @param is, ie integer start and end index of the first dimension of the segment array
736 !> @param je, js integer start and end index of the second dimension of the segment array
737 !> @param pelist integer(:) the PE list of target pes, needs to be monotonically increasing
738 !> @param array_seg MPP_TYPE_ 2D array that the data is to be copied into
739 !> @param data MPP_TYPE_ the source array
740 !> @param is_root_pe logical true if calling from root pe
741 !> @param ishift integer offsets specifying the first elelement in the data array
742 !> @param nk integer size of third dimension for 3D calls
743 !!
744 !> <BR> Example usage:
745 !!
746 !! call mpp_scatter(is, ie, js, je, pelist, segment, data, .true.)
747 !!
748 interface mpp_scatter
749 module procedure mpp_scatterv_int4
750 module procedure mpp_scatter_pelist_int4_2d
751 module procedure mpp_scatter_pelist_int4_3d
752 module procedure mpp_scatterv_int8
753 module procedure mpp_scatter_pelist_int8_2d
754 module procedure mpp_scatter_pelist_int8_3d
755 module procedure mpp_scatterv_real4
756 module procedure mpp_scatter_pelist_real4_2d
757 module procedure mpp_scatter_pelist_real4_3d
758 module procedure mpp_scatterv_real8
759 module procedure mpp_scatter_pelist_real8_2d
760 module procedure mpp_scatter_pelist_real8_3d
761 end interface
762
763 !#####################################################################
764 !> @brief Scatter a vector across all PEs
765 !!
766 !> Transpose the vector and PE index
767 !! Wrapper for the MPI_alltoall function, includes more generic _V and _W
768 !! versions if given displacements/data types
769 !!
770 !! Generic MPP_TYPE_ implentations:
771 !! <li> @ref mpp_alltoall_ </li>
772 !! <li> @ref mpp_alltoallv_ </li>
773 !! <li> @ref mpp_alltoallw_ </li>
774 !!
775 !> @ingroup mpp_mod
776 interface mpp_alltoall
777 module procedure mpp_alltoall_int4
778 module procedure mpp_alltoall_int8
779 module procedure mpp_alltoall_real4
780 module procedure mpp_alltoall_real8
781#ifdef OVERLOAD_C4
782 module procedure mpp_alltoall_cmplx4
783#endif
784#ifdef OVERLOAD_C8
785 module procedure mpp_alltoall_cmplx8
786#endif
787 module procedure mpp_alltoall_logical4
788 module procedure mpp_alltoall_logical8
789 module procedure mpp_alltoall_int4_v
790 module procedure mpp_alltoall_int8_v
791 module procedure mpp_alltoall_real4_v
792 module procedure mpp_alltoall_real8_v
793#ifdef OVERLOAD_C4
794 module procedure mpp_alltoall_cmplx4_v
795#endif
796#ifdef OVERLOAD_C8
797 module procedure mpp_alltoall_cmplx8_v
798#endif
799 module procedure mpp_alltoall_logical4_v
800 module procedure mpp_alltoall_logical8_v
801 module procedure mpp_alltoall_int4_w
802 module procedure mpp_alltoall_int8_w
803 module procedure mpp_alltoall_real4_w
804 module procedure mpp_alltoall_real8_w
805#ifdef OVERLOAD_C4
806 module procedure mpp_alltoall_cmplx4_w
807#endif
808#ifdef OVERLOAD_C8
809 module procedure mpp_alltoall_cmplx8_w
810#endif
811 module procedure mpp_alltoall_logical4_w
812 module procedure mpp_alltoall_logical8_w
813 end interface
814
815
816 !#####################################################################
817 !> @brief Basic message-passing call.
818 !!
819 !> <TT>MPP_TYPE_</TT> corresponds to any 4-byte and 8-byte variant of
820 !! <TT>integer, real, complex, logical</TT> variables, of rank 0 or 1. A
821 !! contiguous block from a multi-dimensional array may be passed by its
822 !! starting address and its length, as in <TT>f77</TT>.
823 !!
824 !! <TT>mpp_transmit</TT> is currently implemented as asynchronous
825 !! outward transmission and synchronous inward transmission. This follows
826 !! the behaviour of <TT>shmem_put</TT> and <TT>shmem_get</TT>. In MPI, it
827 !! is implemented as <TT>mpi_isend</TT> and <TT>mpi_recv</TT>. For most
828 !! applications, transmissions occur in pairs, and are here accomplished
829 !! in a single call.
830 !!
831 !! The special PE designations <TT>NULL_PE</TT>,
832 !! <TT>ANY_PE</TT> and <TT>ALL_PES</TT> are provided by use
833 !! association.
834 !!
835 !! <TT>NULL_PE</TT>: is used to disable one of the pair of
836 !! transmissions.<BR/>
837 !! <TT>ANY_PE</TT>: is used for unspecific remote
838 !! destination. (Please note that <TT>put_pe=ANY_PE</TT> has no meaning
839 !! in the MPI context, though it is available in the SHMEM invocation. If
840 !! portability is a concern, it is best avoided).<BR/>
841 !! <TT>ALL_PES</TT>: is used for broadcast operations.
842 !!
843 !! It is recommended that
844 !! @ref mpp_broadcast be used for
845 !! broadcasts.
846 !!
847 !! The following example illustrates the use of
848 !! <TT>NULL_PE</TT> and <TT>ALL_PES</TT>:
849 !!
850 !! <PRE>
851 !! real, dimension(n) :: a
852 !! if( pe.EQ.0 )then
853 !! do p = 1,npes-1
854 !! call mpp_transmit( a, n, p, a, n, NULL_PE )
855 !! end do
856 !! else
857 !! call mpp_transmit( a, n, NULL_PE, a, n, 0 )
858 !! end if
859 !!
860 !! call mpp_transmit( a, n, ALL_PES, a, n, 0 )
861 !! </PRE>
862 !!
863 !! The do loop and the broadcast operation above are equivalent.
864 !!
865 !! Two overloaded calls <TT>mpp_send</TT> and
866 !! <TT>mpp_recv</TT> have also been
867 !! provided. <TT>mpp_send</TT> calls <TT>mpp_transmit</TT>
868 !! with <TT>get_pe=NULL_PE</TT>. <TT>mpp_recv</TT> calls
869 !! <TT>mpp_transmit</TT> with <TT>put_pe=NULL_PE</TT>. Thus
870 !! the do loop above could be written more succinctly:
871 !!
872 !! <PRE>
873 !! if( pe.EQ.0 )then
874 !! do p = 1,npes-1
875 !! call mpp_send( a, n, p )
876 !! end do
877 !! else
878 !! call mpp_recv( a, n, 0 )
879 !! end if
880 !! </PRE>
881 !! <br>Example call:
882 !! @code{.F90}
883 !! call mpp_transmit( put_data, put_len, put_pe, get_data, get_len, get_pe )
884 !! @endcode
885 !> @ingroup mpp_mod
886 interface mpp_transmit
887 module procedure mpp_transmit_real8
888 module procedure mpp_transmit_real8_scalar
889 module procedure mpp_transmit_real8_2d
890 module procedure mpp_transmit_real8_3d
891 module procedure mpp_transmit_real8_4d
892 module procedure mpp_transmit_real8_5d
893#ifdef OVERLOAD_C8
894 module procedure mpp_transmit_cmplx8
895 module procedure mpp_transmit_cmplx8_scalar
896 module procedure mpp_transmit_cmplx8_2d
897 module procedure mpp_transmit_cmplx8_3d
898 module procedure mpp_transmit_cmplx8_4d
899 module procedure mpp_transmit_cmplx8_5d
900#endif
901 module procedure mpp_transmit_int8
902 module procedure mpp_transmit_int8_scalar
903 module procedure mpp_transmit_int8_2d
904 module procedure mpp_transmit_int8_3d
905 module procedure mpp_transmit_int8_4d
906 module procedure mpp_transmit_int8_5d
907 module procedure mpp_transmit_logical8
908 module procedure mpp_transmit_logical8_scalar
909 module procedure mpp_transmit_logical8_2d
910 module procedure mpp_transmit_logical8_3d
911 module procedure mpp_transmit_logical8_4d
912 module procedure mpp_transmit_logical8_5d
913
914 module procedure mpp_transmit_real4
915 module procedure mpp_transmit_real4_scalar
916 module procedure mpp_transmit_real4_2d
917 module procedure mpp_transmit_real4_3d
918 module procedure mpp_transmit_real4_4d
919 module procedure mpp_transmit_real4_5d
920
921#ifdef OVERLOAD_C4
922 module procedure mpp_transmit_cmplx4
923 module procedure mpp_transmit_cmplx4_scalar
924 module procedure mpp_transmit_cmplx4_2d
925 module procedure mpp_transmit_cmplx4_3d
926 module procedure mpp_transmit_cmplx4_4d
927 module procedure mpp_transmit_cmplx4_5d
928#endif
929 module procedure mpp_transmit_int4
930 module procedure mpp_transmit_int4_scalar
931 module procedure mpp_transmit_int4_2d
932 module procedure mpp_transmit_int4_3d
933 module procedure mpp_transmit_int4_4d
934 module procedure mpp_transmit_int4_5d
935 module procedure mpp_transmit_logical4
936 module procedure mpp_transmit_logical4_scalar
937 module procedure mpp_transmit_logical4_2d
938 module procedure mpp_transmit_logical4_3d
939 module procedure mpp_transmit_logical4_4d
940 module procedure mpp_transmit_logical4_5d
941 end interface
942 !> @brief Recieve data from another PE
943 !!
944 !> @param[out] get_data scalar or array to get written with received data
945 !> @param get_len size of array to recv from get_data
946 !> @param from_pe PE number to receive from
947 !> @param block true for blocking, false for non-blocking. Defaults to true
948 !> @param tag communication tag
949 !> @param[out] request MPI request handle
950 !> @ingroup mpp_mod
951 interface mpp_recv
952 module procedure mpp_recv_real8
953 module procedure mpp_recv_real8_scalar
954 module procedure mpp_recv_real8_2d
955 module procedure mpp_recv_real8_3d
956 module procedure mpp_recv_real8_4d
957 module procedure mpp_recv_real8_5d
958#ifdef OVERLOAD_C8
959 module procedure mpp_recv_cmplx8
960 module procedure mpp_recv_cmplx8_scalar
961 module procedure mpp_recv_cmplx8_2d
962 module procedure mpp_recv_cmplx8_3d
963 module procedure mpp_recv_cmplx8_4d
964 module procedure mpp_recv_cmplx8_5d
965#endif
966 module procedure mpp_recv_int8
967 module procedure mpp_recv_int8_scalar
968 module procedure mpp_recv_int8_2d
969 module procedure mpp_recv_int8_3d
970 module procedure mpp_recv_int8_4d
971 module procedure mpp_recv_int8_5d
972 module procedure mpp_recv_logical8
973 module procedure mpp_recv_logical8_scalar
974 module procedure mpp_recv_logical8_2d
975 module procedure mpp_recv_logical8_3d
976 module procedure mpp_recv_logical8_4d
977 module procedure mpp_recv_logical8_5d
978
979 module procedure mpp_recv_real4
980 module procedure mpp_recv_real4_scalar
981 module procedure mpp_recv_real4_2d
982 module procedure mpp_recv_real4_3d
983 module procedure mpp_recv_real4_4d
984 module procedure mpp_recv_real4_5d
985
986#ifdef OVERLOAD_C4
987 module procedure mpp_recv_cmplx4
988 module procedure mpp_recv_cmplx4_scalar
989 module procedure mpp_recv_cmplx4_2d
990 module procedure mpp_recv_cmplx4_3d
991 module procedure mpp_recv_cmplx4_4d
992 module procedure mpp_recv_cmplx4_5d
993#endif
994 module procedure mpp_recv_int4
995 module procedure mpp_recv_int4_scalar
996 module procedure mpp_recv_int4_2d
997 module procedure mpp_recv_int4_3d
998 module procedure mpp_recv_int4_4d
999 module procedure mpp_recv_int4_5d
1000 module procedure mpp_recv_logical4
1001 module procedure mpp_recv_logical4_scalar
1002 module procedure mpp_recv_logical4_2d
1003 module procedure mpp_recv_logical4_3d
1004 module procedure mpp_recv_logical4_4d
1005 module procedure mpp_recv_logical4_5d
1006 end interface
1007 !> Send data to a receiving PE.
1008 !!
1009 !> @param put_data scalar or array to get sent to a receiving PE
1010 !> @param put_len size of data to send from put_data
1011 !> @param to_pe PE number to send to
1012 !> @param block true for blocking, false for non-blocking. Defaults to true
1013 !> @param tag communication tag
1014 !> @param[out] request MPI request handle
1015 !! <br> Example usage:
1016 !! @code{.F90} call mpp_send(data, ie, pe) @endcode
1017 !> @ingroup mpp_mod
1018 interface mpp_send
1019 module procedure mpp_send_real8
1020 module procedure mpp_send_real8_scalar
1021 module procedure mpp_send_real8_2d
1022 module procedure mpp_send_real8_3d
1023 module procedure mpp_send_real8_4d
1024 module procedure mpp_send_real8_5d
1025#ifdef OVERLOAD_C8
1026 module procedure mpp_send_cmplx8
1027 module procedure mpp_send_cmplx8_scalar
1028 module procedure mpp_send_cmplx8_2d
1029 module procedure mpp_send_cmplx8_3d
1030 module procedure mpp_send_cmplx8_4d
1031 module procedure mpp_send_cmplx8_5d
1032#endif
1033 module procedure mpp_send_int8
1034 module procedure mpp_send_int8_scalar
1035 module procedure mpp_send_int8_2d
1036 module procedure mpp_send_int8_3d
1037 module procedure mpp_send_int8_4d
1038 module procedure mpp_send_int8_5d
1039 module procedure mpp_send_logical8
1040 module procedure mpp_send_logical8_scalar
1041 module procedure mpp_send_logical8_2d
1042 module procedure mpp_send_logical8_3d
1043 module procedure mpp_send_logical8_4d
1044 module procedure mpp_send_logical8_5d
1045
1046 module procedure mpp_send_real4
1047 module procedure mpp_send_real4_scalar
1048 module procedure mpp_send_real4_2d
1049 module procedure mpp_send_real4_3d
1050 module procedure mpp_send_real4_4d
1051 module procedure mpp_send_real4_5d
1052
1053#ifdef OVERLOAD_C4
1054 module procedure mpp_send_cmplx4
1055 module procedure mpp_send_cmplx4_scalar
1056 module procedure mpp_send_cmplx4_2d
1057 module procedure mpp_send_cmplx4_3d
1058 module procedure mpp_send_cmplx4_4d
1059 module procedure mpp_send_cmplx4_5d
1060#endif
1061 module procedure mpp_send_int4
1062 module procedure mpp_send_int4_scalar
1063 module procedure mpp_send_int4_2d
1064 module procedure mpp_send_int4_3d
1065 module procedure mpp_send_int4_4d
1066 module procedure mpp_send_int4_5d
1067 module procedure mpp_send_logical4
1068 module procedure mpp_send_logical4_scalar
1069 module procedure mpp_send_logical4_2d
1070 module procedure mpp_send_logical4_3d
1071 module procedure mpp_send_logical4_4d
1072 module procedure mpp_send_logical4_5d
1073 end interface
1074
1075
1076 !> @brief Perform parallel broadcasts
1077 !!
1078 !> The <TT>mpp_broadcast</TT> call has been added because the original
1079 !! syntax (using <TT>ALL_PES</TT> in <TT>mpp_transmit</TT>) did not
1080 !! support a broadcast across a pelist.
1081 !!
1082 !! <TT>MPP_TYPE_</TT> corresponds to any 4-byte and 8-byte variant of
1083 !! <TT>integer, real, complex, logical</TT> variables, of rank 0 or 1. A
1084 !! contiguous block from a multi-dimensional array may be passed by its
1085 !! starting address and its length, as in <TT>f77</TT>.
1086 !!
1087 !! Global broadcasts through the <TT>ALL_PES</TT> argument to
1088 !! @ref mpp_transmit are still provided for
1089 !! backward-compatibility.
1090 !!
1091 !! If <TT>pelist</TT> is omitted, the context is assumed to be the
1092 !! current pelist. <TT>from_pe</TT> must belong to the current
1093 !! pelist. This call implies synchronization across the PEs in
1094 !! <TT>pelist</TT>, or the current pelist if <TT>pelist</TT> is absent.
1095 !!
1096 !! <br>Example usage:
1097 !!
1098 !! call mpp_broadcast( data, length, from_pe, pelist )
1099 !!
1100 !> @param[inout] data Data to broadcast
1101 !> @param length Length of data to broadcast
1102 !> @param from_pe PE to send the data from
1103 !> @param pelist List of PE's to broadcast across, if not provided uses current list
1104 !> @ingroup mpp_mod
1106 module procedure mpp_broadcast_char
1107 module procedure mpp_broadcast_real8
1108 module procedure mpp_broadcast_real8_scalar
1109 module procedure mpp_broadcast_real8_2d
1110 module procedure mpp_broadcast_real8_3d
1111 module procedure mpp_broadcast_real8_4d
1112 module procedure mpp_broadcast_real8_5d
1113#ifdef OVERLOAD_C8
1114 module procedure mpp_broadcast_cmplx8
1115 module procedure mpp_broadcast_cmplx8_scalar
1116 module procedure mpp_broadcast_cmplx8_2d
1117 module procedure mpp_broadcast_cmplx8_3d
1118 module procedure mpp_broadcast_cmplx8_4d
1119 module procedure mpp_broadcast_cmplx8_5d
1120#endif
1121 module procedure mpp_broadcast_int8
1122 module procedure mpp_broadcast_int8_scalar
1123 module procedure mpp_broadcast_int8_2d
1124 module procedure mpp_broadcast_int8_3d
1125 module procedure mpp_broadcast_int8_4d
1126 module procedure mpp_broadcast_int8_5d
1127 module procedure mpp_broadcast_logical8
1128 module procedure mpp_broadcast_logical8_scalar
1129 module procedure mpp_broadcast_logical8_2d
1130 module procedure mpp_broadcast_logical8_3d
1131 module procedure mpp_broadcast_logical8_4d
1132 module procedure mpp_broadcast_logical8_5d
1133
1134 module procedure mpp_broadcast_real4
1135 module procedure mpp_broadcast_real4_scalar
1136 module procedure mpp_broadcast_real4_2d
1137 module procedure mpp_broadcast_real4_3d
1138 module procedure mpp_broadcast_real4_4d
1139 module procedure mpp_broadcast_real4_5d
1140
1141#ifdef OVERLOAD_C4
1142 module procedure mpp_broadcast_cmplx4
1143 module procedure mpp_broadcast_cmplx4_scalar
1144 module procedure mpp_broadcast_cmplx4_2d
1145 module procedure mpp_broadcast_cmplx4_3d
1146 module procedure mpp_broadcast_cmplx4_4d
1147 module procedure mpp_broadcast_cmplx4_5d
1148#endif
1149 module procedure mpp_broadcast_int4
1150 module procedure mpp_broadcast_int4_scalar
1151 module procedure mpp_broadcast_int4_2d
1152 module procedure mpp_broadcast_int4_3d
1153 module procedure mpp_broadcast_int4_4d
1154 module procedure mpp_broadcast_int4_5d
1155 module procedure mpp_broadcast_logical4
1156 module procedure mpp_broadcast_logical4_scalar
1157 module procedure mpp_broadcast_logical4_2d
1158 module procedure mpp_broadcast_logical4_3d
1159 module procedure mpp_broadcast_logical4_4d
1160 module procedure mpp_broadcast_logical4_5d
1161 end interface
1162
1163 !#####################################################################
1164
1165 !> @brief Calculate parallel checksums
1166 !!
1167 !> \e mpp_chksum is a parallel checksum routine that returns an
1168 !! identical answer for the same array irrespective of how it has been
1169 !! partitioned across processors. \e int_kind is the KIND
1170 !! parameter corresponding to long integers (see discussion on
1171 !! OS-dependent preprocessor directives) defined in
1172 !! the file platform.F90. \e MPP_TYPE_ corresponds to any
1173 !! 4-byte and 8-byte variant of \e integer, \e real, \e complex, \e logical
1174 !! variables, of rank 0 to 5.
1175 !!
1176 !! Integer checksums on FP data use the F90 <TT>TRANSFER()</TT>
1177 !! intrinsic.
1178 !!
1179 !! This provides identical results on a single-processor job, and to perform
1180 !! serial checksums on a single processor of a parallel job, you only
1181 !! need to use the optional <TT>pelist</TT> argument.
1182 !! <PRE>
1183 !! use mpp_mod
1184 !! integer :: pe, chksum
1185 !! real :: a(:)
1186 !! pe = mpp_pe()
1187 !! chksum = mpp_chksum( a, (/pe/) )
1188 !! </PRE>
1189 !!
1190 !! The additional functionality of <TT>mpp_chksum</TT> over
1191 !! serial checksums is to compute the checksum across the PEs in
1192 !! <TT>pelist</TT>. The answer is guaranteed to be the same for
1193 !! the same distributed array irrespective of how it has been
1194 !! partitioned.
1195 !!
1196 !! If <TT>pelist</TT> is omitted, the context is assumed to be the
1197 !! current pelist. This call implies synchronization across the PEs in
1198 !! <TT>pelist</TT>, or the current pelist if <TT>pelist</TT> is absent.
1199 !! <br> Example usage:
1200 !!
1201 !! mpp_chksum( var, pelist )
1202 !!
1203 !! @param var Data to calculate checksum of
1204 !! @param pelist Optional list of PE's to include in checksum calculation if not using
1205 !! current pelist
1206 !! @return Parallel checksum of var across given or implicit pelist
1207 !!
1208 !! Generic MPP_TYPE_ implentations:
1209 !! <li> @ref mpp_chksum_</li>
1210 !! <li> @ref mpp_chksum_int_</li>
1211 !! <li> @ref mpp_chksum_int_rmask_</li>
1212 !!
1213 !> @ingroup mpp_mod
1214 interface mpp_chksum
1215 module procedure mpp_chksum_i8_1d
1216 module procedure mpp_chksum_i8_2d
1217 module procedure mpp_chksum_i8_3d
1218 module procedure mpp_chksum_i8_4d
1219 module procedure mpp_chksum_i8_5d
1220 module procedure mpp_chksum_i8_1d_rmask
1221 module procedure mpp_chksum_i8_2d_rmask
1222 module procedure mpp_chksum_i8_3d_rmask
1223 module procedure mpp_chksum_i8_4d_rmask
1224 module procedure mpp_chksum_i8_5d_rmask
1225
1226 module procedure mpp_chksum_i4_1d
1227 module procedure mpp_chksum_i4_2d
1228 module procedure mpp_chksum_i4_3d
1229 module procedure mpp_chksum_i4_4d
1230 module procedure mpp_chksum_i4_5d
1231 module procedure mpp_chksum_i4_1d_rmask
1232 module procedure mpp_chksum_i4_2d_rmask
1233 module procedure mpp_chksum_i4_3d_rmask
1234 module procedure mpp_chksum_i4_4d_rmask
1235 module procedure mpp_chksum_i4_5d_rmask
1236
1237 module procedure mpp_chksum_r8_0d
1238 module procedure mpp_chksum_r8_1d
1239 module procedure mpp_chksum_r8_2d
1240 module procedure mpp_chksum_r8_3d
1241 module procedure mpp_chksum_r8_4d
1242 module procedure mpp_chksum_r8_5d
1243
1244 module procedure mpp_chksum_r4_0d
1245 module procedure mpp_chksum_r4_1d
1246 module procedure mpp_chksum_r4_2d
1247 module procedure mpp_chksum_r4_3d
1248 module procedure mpp_chksum_r4_4d
1249 module procedure mpp_chksum_r4_5d
1250#ifdef OVERLOAD_C8
1251 module procedure mpp_chksum_c8_0d
1252 module procedure mpp_chksum_c8_1d
1253 module procedure mpp_chksum_c8_2d
1254 module procedure mpp_chksum_c8_3d
1255 module procedure mpp_chksum_c8_4d
1256 module procedure mpp_chksum_c8_5d
1257#endif
1258#ifdef OVERLOAD_C4
1259 module procedure mpp_chksum_c4_0d
1260 module procedure mpp_chksum_c4_1d
1261 module procedure mpp_chksum_c4_2d
1262 module procedure mpp_chksum_c4_3d
1263 module procedure mpp_chksum_c4_4d
1264 module procedure mpp_chksum_c4_5d
1265#endif
1266 end interface
1267
1268!> @addtogroup mpp_mod
1269!> @{
1270!***********************************************************************
1271!
1272! module variables
1273!
1274!***********************************************************************
1275 integer, parameter :: PESET_MAX = 10000
1276 integer :: current_peset_max = 32
1277 type(communicator), allocatable :: peset(:) !< Will be allocated starting from 0, 0 is a dummy used
1278 !! to hold single-PE "self" communicator
1279 logical :: module_is_initialized = .false.
1280 logical :: debug = .false.
1281 integer :: npes=1, root_pe=0, pe=0
1282 integer(i8_kind) :: tick, ticks_per_sec, max_ticks, start_tick, end_tick, tick0=0
1283 integer :: mpp_comm_private
1284 logical :: first_call_system_clock_mpi=.true.
1285 real(r8_kind) :: mpi_count0=0 !< use to prevent integer overflow
1286 real(r8_kind) :: mpi_tick_rate=0.d0 !< clock rate for mpi_wtick()
1287 logical :: mpp_record_timing_data=.true.
1288 type(clock),save :: clocks(max_clocks)
1289 integer :: log_unit, etc_unit
1290 integer :: warn_unit !< unit number of the warning log
1291 character(len=32), parameter :: configfile='logfile'
1292 character(len=32), parameter :: warnfile='warnfile' !< base name for warninglog (appends ".<PE>.out")
1293 integer :: peset_num=0, current_peset_num=0
1294 integer :: world_peset_num !<the world communicator
1295 integer :: error
1296 integer :: clock_num=0, num_clock_ids=0,current_clock=0, previous_clock(max_clocks)=0
1297 real :: tick_rate
1298
1299 type(mpp_type_list) :: datatypes
1300 type(mpp_type), target :: mpp_byte
1301
1302 integer :: cur_send_request = 0
1303 integer :: cur_recv_request = 0
1304 integer, allocatable :: request_send(:)
1305 integer, allocatable :: request_recv(:)
1306 integer, allocatable :: size_recv(:)
1307 integer, allocatable :: type_recv(:)
1308! if you want to save the non-root PE information uncomment out the following line
1309! and comment out the assigment of etcfile to '/dev/null'
1310#ifdef NO_DEV_NULL
1311 character(len=32) :: etcfile='._mpp.nonrootpe.msgs'
1312#else
1313 character(len=32) :: etcfile='/dev/null'
1314#endif
1315
1316!> Use the intrinsics in iso_fortran_env
1317 integer :: in_unit=input_unit, out_unit=output_unit, err_unit=error_unit
1318 integer :: stdout_unit
1319
1320 !--- variables used in mpp_util.h
1321 type(summary_struct) :: clock_summary(max_clocks)
1322 logical :: warnings_are_fatal = .false.
1323 integer :: error_state=0
1324 integer :: clock_grain=clock_loop-1
1325
1326 !--- variables used in mpp_comm.h
1327 integer :: clock0 !<measures total runtime from mpp_init to mpp_exit
1328 integer :: mpp_stack_size=0, mpp_stack_hwm=0
1329 logical :: verbose=.false.
1330
1331 integer :: get_len_nocomm = 0 !< needed for mpp_transmit_nocomm.h
1332
1333 !--- variables used in mpp_comm_mpi.inc
1334 integer, parameter :: mpp_init_test_full_init = -1
1335 integer, parameter :: mpp_init_test_init_true_only = 0
1336 integer, parameter :: mpp_init_test_peset_allocated = 1
1337 integer, parameter :: mpp_init_test_clocks_init = 2
1338 integer, parameter :: mpp_init_test_datatype_list_init = 3
1339 integer, parameter :: mpp_init_test_logfile_init = 4
1340 integer, parameter :: mpp_init_test_read_namelist = 5
1341 integer, parameter :: mpp_init_test_etc_unit = 6
1342 integer, parameter :: mpp_init_test_requests_allocated = 7
1343
1344!> MPP_INFO_NULL acts as an analagous mpp-macro for MPI_INFO_NULL to share with fms2_io NetCDF4
1345!! mpi-io. The default value for the no-mpi case comes from Intel MPI and MPICH. OpenMPI sets
1346!! a default value of '0'
1347#if defined(use_libMPI)
1348 integer, parameter :: mpp_info_null = mpi_info_null
1349#else
1350 integer, parameter :: mpp_info_null = 469762048
1351#endif
1352
1353!> MPP_COMM_NULL acts as an analagous mpp-macro for MPI_COMM_NULL to share with fms2_io NetCDF4
1354!! mpi-io. The default value for the no-mpi case comes from Intel MPI and MPICH. OpenMPI sets
1355!! a default value of '2'
1356#if defined(use_libMPI)
1357 integer, parameter :: mpp_comm_null = mpi_comm_null
1358#else
1359 integer, parameter :: mpp_comm_null = 67108864
1360#endif
1361
1362!***********************************************************************
1363! variables needed for subroutine read_input_nml (include/mpp_util.inc)
1364!
1365! public variable needed for reading input nml file from an internal file
1366 character(len=:), dimension(:), allocatable, target, public :: input_nml_file
1367 logical :: read_ascii_file_on = .false.
1368!***********************************************************************
1369
1370! Include variable "version" to be written to log file.
1371#include<file_version.h>
1372 public version
1373
1374 integer, parameter :: max_request_min = 10000
1375 integer :: request_multiply = 20
1376
1377 logical :: etc_unit_is_stderr = .false.
1378 integer :: max_request = 0
1379 logical :: sync_all_clocks = .false.
1380 namelist /mpp_nml/ etc_unit_is_stderr, request_multiply, mpp_record_timing_data, sync_all_clocks
1381
1382 contains
1383#include <system_clock.fh>
1384#include <mpp_util.inc>
1385#include <mpp_comm.inc>
1386
1387 end module mpp_mod
1388!> @}
1389! close documentation grouping
subroutine mpp_sync_self(pelist, check, request, msg_size, msg_type)
This is to check if current PE's outstanding puts are complete but we can't use shmem_fence because w...
integer warn_unit
unit number of the warning log
Definition mpp.F90:1290
subroutine mpp_error_basic(errortype, errormsg)
A very basic error handler uses ABORT and FLUSH calls, may need to use cpp to rename.
integer, parameter, public mpp_comm_null
MPP_COMM_NULL acts as an analagous mpp-macro for MPI_COMM_NULL to share with fms2_io NetCDF4 mpi-io....
Definition mpp.F90:1359
integer get_len_nocomm
needed for mpp_transmit_nocomm.h
Definition mpp.F90:1331
character(len=32), parameter warnfile
base name for warninglog (appends ".<PE>.out")
Definition mpp.F90:1292
type(communicator), dimension(:), allocatable peset
Will be allocated starting from 0, 0 is a dummy used to hold single-PE "self" communicator.
Definition mpp.F90:1277
integer, parameter, public mpp_info_null
MPP_INFO_NULL acts as an analagous mpp-macro for MPI_INFO_NULL to share with fms2_io NetCDF4 mpi-io....
Definition mpp.F90:1350
integer clock0
measures total runtime from mpp_init to mpp_exit
Definition mpp.F90:1327
real(r8_kind) mpi_tick_rate
clock rate for mpi_wtick()
Definition mpp.F90:1286
integer world_peset_num
the world communicator
Definition mpp.F90:1294
integer in_unit
Use the intrinsics in iso_fortran_env.
Definition mpp.F90:1317
real(r8_kind) mpi_count0
use to prevent integer overflow
Definition mpp.F90:1285
subroutine mpp_sync(pelist, do_self)
Synchronize PEs in list.
Takes a given integer or real array and returns it as a string.
Definition mpp.F90:411
Scatter a vector across all PEs.
Definition mpp.F90:776
Perform parallel broadcasts.
Definition mpp.F90:1105
Calculate parallel checksums.
Definition mpp.F90:1214
Error handler.
Definition mpp.F90:382
Gather data sent from pelist onto the root pe Wrapper for MPI_gather, can be used with and without in...
Definition mpp.F90:698
Reduction operations. Find the max of scalar a from the PEs in pelist result is also automatically br...
Definition mpp.F90:538
Reduction operations. Find the min of scalar a from the PEs in pelist result is also automatically br...
Definition mpp.F90:560
Recieve data from another PE.
Definition mpp.F90:951
Scatter (ie - is) * (je - js) contiguous elements of array data from the designated root pe into cont...
Definition mpp.F90:748
Send data to a receiving PE.
Definition mpp.F90:1018
Reduction operation.
Definition mpp.F90:597
Calculates sum of a given numerical array across pe's for adjoint domains.
Definition mpp.F90:642
Basic message-passing call.
Definition mpp.F90:886
Create a mpp_type variable.
Definition mpp.F90:510
a clock contains an array of event profiles for a region
Definition mpp.F90:250
Summary of information from a clock run.
Definition mpp.F90:266
Communication information for message passing libraries.
Definition mpp.F90:230
Communication event profile.
Definition mpp.F90:241
Data types for generalized data transfer (e.g. MPI_Type)
Definition mpp.F90:287
Persisent elements for linked list interaction.
Definition mpp.F90:303
holds name and clock data for use in mpp_util.h
Definition mpp.F90:279